
BOLT BERANEK AND NEWMAN i N c

CON5UITING D E V F I O -■ M E N T I E S E A « C H

H

Report No. 3182

INTERFACE MESSAGE PROCESSORS FOR

THE ARPA COMPUTER NETWORK

QUARTERLY TECHNICAL REPORT No. 3

1 July 1975 to 30 September 1975

Principal Investigator: Mr. Frank E. Heart
Telephone (617) 491-1850, Ext. 470

Sponsored by:
Advanced Research Projects Agency
ARPA Order No. 2351, Amendment 15
Prügram Element Codes 62301E, 62706E, 62708E

Contract No. F08606-75-C-0032^
Effective Date: 1 January 1975
Expiration Date: 30 June 1976
Contract Amount: $2,384,745

Title of Work: Operation and Maintenance of the ARPANET

Submitted to:

IMP Program Manager
Range Measurements Lab.
Building 981
Patrick Air Force Base
Cocoa Beach, Florida 32925

The views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied,
of the Advanced Research Projects Agency or the U.S. Government.

CAMBRIDGE WASHINGTON DC CHICAGO HOUSTON LOS ANGEIES SAN FRANCISCO

.... ■. y

3182 / Bolt Peranek and Newman Inc

OcU
I

j

INTERFACE MESSAGE PROCESSORS FOR

THE ARPA COMPUTER NETWORK

[UARTERLY TECHNICAL REPÄL NO, 3

10}
/

i

Submitted to:

IMP Program Manager
Range Measurements Lab
Building 981
Patrick Air Force Base
Cocoa Beach, Florida 32925

^i(r ^

\

This research was supported by the Advanced Research Projects
Agency of the Department of Defense and monitored by the Range
Measurements Laboratory under Contract No. F0B6Ü6-75-r-0032

Report No. 318 2 Bolt Bora nek and Newman Inc*

TABLE OF CONTENTS
Page

1. OVERVIEW 1

2. A METHOD FOR DETECTING INTERRUPT BUGS 8

2.1 The Problem 9

2.2 A Systematic Approach to the Problem 13

2^3 Automating the Approach 21

2.4 Summary 26

in

PRECSDIKJ PAOS UUtflUNOT iUM^D

Report No. 3182 Bolt Beranek and Newman Inc.

1. OVERVIEW

This Quarterly Technical Report, Number 3» describes aspects

of our work on the ÄRPA Computer Network under Contract No.

F08606-75-C-003? during the third quarter of 1975. (Work

performed in 1973 and 197^ under Contract No. F08606-75-C-0027

has been reported in an earlier series of Quarterly Technical

Reports, numbered 1-8; and work performed from 1969 through 1972

under Contract No. DAHC-69-C-0179 has been reported in a still

earlier series of Quarterly Technical Reports, numbered 1-16.)

Several IMPs were delivered during the third quarter. A 316

IMP was installed at Scott Air Force Base. An ARPA-owned 316

Satellite IMP was installed at Goonhilly in the UK and a

privately-owned 316 Satellite iMP was installed at Etam, West

Virginia; these two Satellite IMPs permit the initiation of

multi-access satellite communication experiments. The IMP which

was delivered to MSA during the second quarter was installed in

the network this quarter. We also delivered the network's first

Pluribus IMP, to SDAC, late in the third quarter. This IMP was

undergoing hardware and software shakedown at the end of the

quarter and was expected to be installed in the network on an

operational basis on the first day of the fourth quarter.

i

HO Hcport No. 31B2 Bolt Boranek and Newman Inc.

In addition to the above, a cyclic relocation of IMPs in the

Cambridrc, Massachusetts, area was carried out during the

quarter. The intent was to permit higher bandwidth at the CCA

node. Accordinply, the CCA TIP was moved to MIT, the MIT 316 IMP

was noved to Harvard, and the Harvard 516 IMP was moved to CCA.

We have also been active in a number of other areas during

the quarter, as discussed below.

Security Activities. During the quarter ou^ security

activities centered primarily on the carrying out of PLI TEMPEST

tests, refining the PLI hardware and software, and beginning

formal PLI documentation. A cornplctc PLI, an IMP, and extensive

test equipment were shipped at the beginning of the quarter to

NESSEC in Washington, D.C., where the TEMPEST tests were carried

out. These tests resulted in a generally satisfactory "bill of

health,! for the PLI. Taking advantage of the availability of an

actual Key Generator (KG) at NESSEC and the insight into the PLI

operation gained during TEMPEST tests, we ran a number of

additional tests whjch flushed out some residual hardware and

software bugs. We also ran tests to confirm our previous

estimates of PLI performance when operating with the KG. These

tests have suggested some hardware features which, if feasible,

could improve performance• The PLI equipment will be shipped

Report No. 31B2 Bolt Bcranek and Newman Inc.

back to BBN early in the fourth quarter whore it will be readied

for roshipment to the field» In the documentation area, we began

software documentation and have almost finished a functional

specification and interfacing manual which will be published as

an appendix to BBN Report 1822,

We also participated in an ARPA-organised meeting to begin

planning an experimental program to demonstrate the feasibility

of securing a packet-switching network while maintaining much

more flexibility than is possible with the PLI, and we produced a

working document outlining an approach to such flexible packet

network security.

Network Control Center^ Prorram. DurinE the quarter the

Network Control Center program was modified to be able to handle

the situation of more than sixty-three IMPs in the network. The

program is now assembled to permit about eighty IMPs with a

variable number of Hosts (in particular more than four) per IMP,

although the basic program modification is such that with only a

trivial reassembly the program can handle many more than eighty

IMPs. During the process of modification the program was

reformatted to permit it to be assembled by our PDP-10 cross

assembler rather than cur PDP-1 cross assembler, and NCC program

development will henceforth be done on our PDP-10. This move

Report No» 3132 Bolt Boranek and Newman Inc.

from the PDP-1 to the PDP-10 is in keeping with our general goal

of movinn NCC tasks off the aping PDP-1, Also, network

throughput data collection, which was previously done on the

PDP-1 with copies sent to the PDP-10, is now done entirely on the

PDP-10.

Network Hardware.Maintenance. The third quarter was the

first during which DBN provided hardware maintenance directly

rather than obtaining it through a subcontract to Honeywell, Our

experience this past quarter has confirmed the wisdom of our

switch to direct maintenance. In particular, July was the best

month in network history from the point of view of hardware

maintenance; and the cuarterly average was very good as compared

with previous quarters.

Terninal IMP. During the quarter we reached a minor

milestone with regard to TIP operation and software maintenance.

For the first time within memory (possibly ever), all TIPs in the

network are now running the same version of the TIP software

system. Not content to let things rest, we are quite far

advanced in our new Telnet implementation for the TIP, and we are

still aiming for new Telnet operation by the beginning of next

year. Also, early in the fourth quarter the necessary TIP

software change will be started to allow the TIP to be used when

Report No. 3182 Bolt Beranek and Newman Inc.

more than sixty-three IMPs aro on the network. We also hope this

channe will be done by the beginning of next year.

11-1_-IHP DeveloDmGnt. The 316 IMP program has undergone a

period of consolidation this past quarter to clem up and prepare

for the massive change which will be implemented in the fourth

quarter to permit more than sixty-three IMPs on the network.

Prior to entry into the consolidation phase, the IMP program had

remained stable for three full months, one of the longest periods

without change in network history. In addition to a number of

very minor modifications, the consolidation has Included

reclaiming some storage both for buffers and for future code,

implementing a cleaner packet reload system, and implementing a

load/unload package (which permits the trace, statistics, and VDH

packages to be installed and removed almost at will). We are now

prepared for the actual implementation of the

more-than-sixty-three-IMP change. During the third quarter we

also wrote the modification to BBN Report 1822 to cover the new

formats required by the change, and a new edition of this report

will be distributed as early as possible in the fourth quarter.

Finally, curing the third quarter we have essentially completed

the development of a version of the Very Distant Host package

which can run in extended core of an IMP or TIP so that it does

not have to occupy IMP buffer space.

Report No. 3182 Bolt Doranok and Newman Inc.

Pluribun IMP. As specified in our contract, our efforts

with the Plurlbus IMP hardware development had almost ceased as

of the beginning of the third quarter. We have continued to

spend effort finishing Pluribus documentation to add to the throe

documents that have already been published. Two more Pluribus

documents» numbers H and 6, are almost done and should be

published oarly in the fourth quarter. Documents 7 through 9 are

being compiled. Document 3 is still some way in the distance.

Also» we have spent a littlf time this quarter developing a

version of UJO Pluribus IMP modem interface which meets 7.2^4 and

V.28 standards. In the Pluribus IMP software area, we have

continued to improve the prorram both to keep up with 31b IMP

ehangos and to tidy up a number of loose ends of the Pluribus IMP

implementation. Naturally, the actual installation the Pluribus

IMP at SDAC has forced a different mode of software development

than has previously been used; as with the 316 IMP, the Pluribus

IMP software must now continue its development in a style which

uses very small incremental changes while always maintaining an

operational system.

Satellite IMP. During the quarter the bulk of our efforts

in the Satellite IMP area were directed to the installation and

beginning of field operation and maintenance of Satellite IMPs at

the Etam and Goonhilly earth stations. The Etam Satellite IMP

Report No. 318.' Bolt Bcranek and Newman Inc?

was installed at the end of July with very little difficulty.

The Goonhiily Satellite IMP was installed in August with somewhat

more difficulty. Both systems havo now been operational together

and with the rest of the network since official service began at

the beninnin^ of September. Also, we attended a meeting of ARPA,

Western Union International (the record carrier' for the U.S. side

of the satellite link), and COMSAT for the purpose of thrashing

out maintenance procedures for the satellite circuit. Finally,

we attended a meeting of the group of institutions which will

actually carry out the experiments involving the Satellite IMPs,

at which planning for the experiment was begun.

Report No. 31B2 Bolt Beranek and Newman Inc.

i
i

2. A METHOD FOK DETECTING INTERRUPT BUGS

Both the IMF and the TIP have required and continue to

require devclonn;ent and maj ntenanco of comev/hat complicated,

intermpt-driven, real time programs. As is typical with such

programs, "interrupt bugs" or "multiprogramming bugs" have

occasionally crept into the programs. Since such buns are among

the most difficult to diacnose, and since we have (slowly but)

almost continuously had to modify our programs, thus providing

opportunities for bugs to creep in, we were forced for the sake

of self-preservation to develop a systematic method of assuring

the absence of multipropramminr burs.

This systematic method has been in use for over two years

and, while not perfect, has in fact caught many such hues which

might otherwise have caused IMP and TIP problems. Consequently,

although "methods of automatic program verificaion" are a bit

outside the normal scope of our contract, we think the method has

been of sufficient direct value to network maintenance to justify

the following report.

Rpport No. ?182 Bolt Beranek and Newman Inc.

'.1 Thp Problem

Multiprogramming burs are tho^e which can occur when two

processes within a system attempt to modify a variable

simultaneously or when one procecs interferes with the control

structure of another by incorrectly sharing a subroutine with it.

These bu^s occur in multiprocessinfr systems, where the

conflijtinp processes are truly concurrent, as well as in

m.itiprogramminr systems, where only one process can be active at

a time. A bug of this type is freouently very difficult to

locate beeauoe neither process" can detect any anomaly,

Furt: »more, since a failure caused by such a bug depends on the

coincident tininr of the conflicting processes, a failure may

OCCJr only once a minute, once an hour, or even less frequentlv.

Also, problems often will not show up until the next time the

variable is ref(_rcnced, whic*; may occur long after and far

removed from the actual source of the fault.

Dijkstra and others have done much theoretical work on the

general problem of coordinating independent processes. However,

when execution speed and program size are critical factors, the

general procedures they developed are too expensive to use every

time a variable is referenced. Further, in many environments the

actual protection techniques available are fairly

Report No. 3162 Bolt Beranek and Newman Inc.

straightfor'/ard. It is our belief, then, that what is needed is

not further ,Jork on "automatic" protection schemes, but rather

techniques for identifying those portions of a program which

actually require protection, thereby allowing the remainder of

the program to be left unencumbered. Our work has focussed on

these practical problems within the context of assembly language

programming for small, real-time systems.

We concentrate for the most part on interrupt-based systems

because this is the environment with which we are most familiar

and in which we have done the most analysis. Conceptually,

however, all multiprogramming systems merely simulate a

multiProcCLS^inp system. The primary attribute of such systems is

the recuirement for rapid response to external events.

Interrupts are the most common architecture with which such

systems are constructed. Although the techniques we have

developed are designed for interrupt-driven systems, they apply

with little significant ^edification to the entire spectrum of

multiprocnamming systems.

As an example of a common interrupt bug, consider a system

in which there is a loop to process data and an interrupt routine

to service an input device supplying the data. The routines

communicate by means of a variable which is incremented by the

10

Report No. 31B2 Bolt Beranek and Newman Inc.

interrupt routine each tine a datum arrives and is decremented by

the processing loop each time a datum is processed. The variable

is zero when the system is idle, indicating that there is no data

waiting to be processed. Now, let us hypothesize that the

interrupt routine and the processinp, loop look something like:

INTERRUPT: SAVE ACCUMULATOR
LOAD VARIABLE
INCREMENT ACCUMULATOR
STORE INTO VARIABLE
RESTORE ACCUMULATOR
EXIT

LOOP: LOAD VARIABLE
TEST ACCUMULATOR EQUAL TO ZERO
IFSO GOTO LOOP
DECREMENT ACCUMULATOR
STORE INTO VARIABLE
PROCESS A DATUM
GOTO LOOP

An observant systems programmer will notice that the above

routine, as simple as it is, contains an "interrupt bug". Assume

that the variable has some ^ilue, n. If a datum arrivea just

after the LOAD VARIABLE instruction, an interrupt will occur and

the interrupt routine will increment the variable to n+1 When

the loop is resumed, the now-incorrect value of n will be

restored to the accumulator and will get decremented, and instead

of containing n at the beginning of the next loop, the variable

will contain n-1; a datum will have been lost.

11

I

(eport No. 3182 Bolt Beranek and Newman Inc.

One way to fix this hup is to rewrite the processinn loop as

follows:

LOOP: DISABLE INTERRUPT SYSTEM
LOAD VARIABLE
TEST ACCUMULATOR EQUAL TO ZERO
IFSO GOTO ENAB
DECREMENT ACCUMULATOR
STORE INTO VARIABLE
ENABLE INTERRUPT SYSTEM
PROCESS A DATUM (wc assume no conflict hr^)
GOTO LOOP

ENAB: ENABLE INTERRUPT SYSTEM
GOTO LOOP

The variable is being shared between two routines, and for a

small portion of the time its value is "incorrect"; from the

LOAD until the STORE, During this period, the interrupt routine

must be prevented from runninp and usm^ the incorrect value of

the variable, and the simplest way to do this is just to disable

the entire interrupt system, preventinc- all interrupts.

A fairly simple rule suggests itself: if any routine

modifies a shared variable, it must prevent any other routine

from using the variable while it is being changed, luis rule is

the crux of interrupt programming.

12

Report No. 318? Bolt Beranok and Newman Inc.

2»2 A Systematic Approach to the Problem

The first step in understanding a system is to determine its

interrupt structure, which usually follows from an analysis of

the desired response characteristics of the system and its I/O

devices» This will result in a directed ^raph in which the nodes

correspond to the interrupt routines and the arcs indicate which

routines should not be interrupted by which others. tror typical

computers, the interrupt system will constrain this structure to

be a simpje linear ordering of routines by priority; in others it

is possible to have a more complex structure. (In a linear

structure, if B cannot interrupt A and C cannot interrupt E, then

C cannot interrupt A. Some computer architectures would permit C

to interrupt A unless the software explicitly prohibits it.)

In our particular case, although the computer in fact poses

no constraints, we chose to implement a linear system. There are

two primary reasons for this choice. First, more complicated

structures offer little, if any, advantage over a linear system.

Second, the interrelationships of the interrupt routines become

much more complicated when structure is non-linear. Except as

noted, for the remainder of this report we will deal exclusively

with linear interrupt structures. The approaches and analyses

can be carried over to more complicated structures fairly easily,

13

Report No. 31B? Bolt Beranek and Newman Inc.

but in doing so the rules we describe will rapidly become very

difficult.

The next step is to identify the system's interrupt

routines. This identification is usually a simple matter of

startinn at oach interrupt entrance and tracing out the control

paths until the interrupt exits are reached. Non-reentrant

shared code and subroutines are treated as though they were

variables; that is, the techniques described below for dealing

with variabJes are applied to determine an "effective interrupt

level" for the code or subroutine, and then the analysis proceeds

as though the code were actually a part of the level thus

cJp^ppfTixned, the? procedure repnnted iteratively until all of the

00rje in the system has been associated with an interrupt.

For each variable in the system, the highest priority

routine which references it may do so with impunity. However,

all lower routines must take care that they are not interrupted

while modifyins the variable in question. If the lower routines

lock out interrupts at (and implicitly bejow) the level of the

highest routine, they will be assured error-free access to the

variable,* Thus, for each variable we must determine an

* It is primarily the absence of this property that makes
non-linear structures difficult to deal with.

]H

Report No. 3182 Bolt Beranek and Newman Inc.

"effective interrupt leveln, the level at which interrupts must

be disabled (either implicitly by beinr the interrupt routine at

that lev»l or explicitly in lower levels) to guarantee safe

access. To do this, examine each such clement and determine

which routines share it. The "highest priority" routine is the

one which cannot be interrupted by any of the other routines

sharing the clement; its level is assigned to the element.

In an existinK system, locating an interrupt bug probably

requires some degree of insight into the structure of the

program. Nonetheless, by methodical application of the above

rules, it is possible to verify the structure of an entire system

and discoycr any bugs present in it. In fact, for some bugs this

may be the fastest way to locate them.

If we number the interrupt levels so that a given level can

be interrupted by all lower-numbered levels and implicitly

inhibits all higher-numbered levels, then the effective (or

"hardware") Jevels we have just assigned are simply the lowest

numbered levels which use each element, Now, when any higher

nnmbered routine uses an element, it must at least disable

interrupts up to that level. Notice that what the routine is

actually doing is making itself appear to the interrupt system as

15

Report No. 3182 Bolt Beranck and Newman Inc.

though it were the lower numbered interrupt. Thus, one can view

the situation as beinp that the lower priority routine has,

throurh software, "become" a hinher priority routine. We refer

to this proerdure as makinp the routine modify its "software"

interrupt level.

The hardware level of a routine reflects which routjjies it

can Interrupt. and the software level indicates which routinp^

are prevented from interruptinn it. At the point of the

interrupt entry, these levels are the same, and a routine can

neither alter its hardware level nor make its software level

higher than its hardware level. It can, however, decrease and

restcre its software level as necessary to insure safe access to

any variables it might need.

Our basic approach consists of a mechanism which simply

maintains and displays the hardware and software levels for each

line of code and variable in the system. With this information

as a ruide, the proerammer can proceed on his own to resolve any

conflicts that are pointed out. The level information is

inserted, modified and acted upon in a completely manual fashion;

it is loss an augmentation of our programming system than it is a

documentation technique. Nonetheless, it has proven valuable for

several reasons: 1) the rules are quite simple and

16

Hoport No» 3182 Dolt Deranek and Newman Inc.

deterministic, and thoy lead to a high level of pronran

correctness when properly applied; 2) the dooumentation aspect

of the system is, in itself, valuable; and 3) forcinn the

programmer to bo aware of multiprogramming issues improves the

overall reliability of his programs*

There are six macros to declare the hardware and software

levels of the program. In addition to setting the levels, the

macros perform various consistency checks. The first three

agseniblc appropriate code to achieve the desired effect upon the

interrupt system:

1) INT N declnrcp the interrupt entrance at level U»
2) 1NH II locks interrupts at level \U
3) ENb restores the interrupt system to the current hardware

level.

Because programs have transfers and subroutine calls and

ncn-contiguous fragments of code, there are analogs to INT, INH

and ENB which effect the declaration for the purposes of checking

but presume that the interrupt system is already at the declared

level, and thus do not generate any code:

ij) LEV N declares the code to be hardware level N. This is
an implicit INT,

5) LCK M declares the code to be at software level N. This
is an implicit INH.

6) RET declares the code's software level to be equal to its
hardware level. This is an implicit ENB.

17

Report No. 3182 Bolt Beranek and Newman Inc,

Each word of code that is assembled and shown in the listing

is accompaniod by its hardware level, and also by its software

leveJ if different. Variables are indicated with a V and the

determination of their effectivo levels and the verification of

their correct use is done manually, or otherwise, distinctly from

the assembly process. For example, some levels that have been

compiled for our IMP program include:

M2I = 0 Hodem-to-IMP
I2H - 2 IMP-to-Modem
I2H r 3 IHP-to-Host
H21 £ 4 Host-tO-IMP
T.O ^ 5 Timeout
TSK = 6 Task
BCK = 7 Background

A sample use of these levels (in TASK) minht be:

6 LDÄ THIS /GET THIS PACKET
6 INH 1211 /LOCK OUT I2M
6 2 STA EMQ XI /ADD NEW PACKET TO QUEUE
6 2 STA EMQ X /EMO = END OF MODEM QUEUE
6 2 ENE /COME BACK TO TASK LEVEL
6 JMP FOO

The effective levels for THIS and EMQ must bef,known'f (for

example, by reference to a previous assembly). THIS is on level

6; it is a temporary in Task. EMQ is on level 2; it is shared by

I2M, Timeout and Task.

The INH-ENB mechanism is somewhat simplistic; in practice,

things can be quite a bit more complicated. The principles

Report No. 3182 Bolt Beranek and Newman Inc»

always remain the same, but it is not always clear just how to

prevent a Riven routine from running. There can be assorted

interlocks in the software: it might be that a particular

interrupt cannot occur (for example, because the device is known

to be inactive), or it might be that the higher priority routine

cannot take a path which accesses the variable in question (for

example, in setting up the parameters of a datum before a flag

indicating that there is. a datum has been set). However, once

the key places in the system are pointed out, it is almost always

easy to implement the controls or verify that they are already

present *

In systems with more complicated interrupt structures,

applying the rules becomes correspondingly more difficult.

Nonetheless, even the most intractable of structures will yield

to the steadyhanded application of the rules. We give three

examples. First, consider two user-level jobs within a

timesharing system. The timesharing system itself is probably a

complicated interrupt*driven system, but let us direct our

attention only to the two user jobs. The nature of a timesharing

system is that at any point a user job can be interrupted,

"swapped out", and another user Job run in its place. User jobs

typically have no explicit way to "inhibit" one another. So if

two jobs wish to communicate through some shared structure, be it

19

Heport No. 318; Bolt Doranek and Newman Inc.

shared momory or a shared dink file, considerable care must be

given to prevent interrupt bugs from croppinn up. Again, the

meohanisms chosen will vary widely, but the basic rules can be

used again and again to pinpoint those portions of a program

which require protection.

Second, consider two processes (for instance, coroutines)

that both run at background level, which suspend and resume

processing on some basis (this is, in essence, the heart of a

poiiinp; system). If these two processes share a common resource

the following kind of bug can occur:

A I
LüAD X LOAD X

(suspend processinn)
(resume processing)

STORE X

(suspend processing)
(resume processing)

STORE X

Because B can run between the time A suspends and resumes and

Vlce versa, either's STORE X could be an error if the other has

run and changed X. Again, the problem is that a routine modifies

a shared variable in an "interruptable,l way. A systematic

solution to this problem can also be developed based on the

assignment of local levels within the main hardware level to all

routines and variables and the use of the rule that a routine

implicitly inhibits all lower priority levels and only: its own

20

Hcport No. 3182 Bolt Beranek and Ncwrnari Inc.

sublevel -- each sublevel considers the other subievels at its

level as beinn ,fhinher" than it.

Our third example of a situation requiring an extension to

our systematic approach is that of a true multiprocessor. Here

the problem of concurrent access to sha-ed resources is present

at all times. Protection in such an environment can be eftected

by the well-known uninterruptable "test and set11 instruction.

However, now a new type of problem arises: when routines require

several "looks" at once in order to proceed, deadlocks can occur

if all routines do not take and release locks in a coordinated

wayt An extension to our approach is of value here: ■5 r the

locks are assinncd levels and routines are constrained never to

take a lock with a lower number than one it already has (i.e.,

locks must be taken in strictly ascending order), our system can

be expanded to provide the necessary sequencing information to

allow the avoidance of lock-ordering deadlocks.

2.3 Automating the Approach

In this section we discuss a means of making our approach

automatic. The procedure we are going to describe is a

f'cookbookf, for assigning levels and verifying that there are no

bugs. Much of this work could be done by a program, and the

procedure has been organized with that in mind. However, we have

not actually implemented this automatic approach.

21

Report No. 3182 Bolt Boranok nnd Newman Inc.

For the first step, we identify and assign hardware levels

to all of the exocutable code in the system. We start at the

actual hardware interrupt entrances and assign to them the actual

level of the interrupt they represent. We the- trace through the

code in the natural way, assigning the starting hardware level to

all code (not in subroutines) "reachable" from the interrupt

entrances (an instruction which occasionally skips assigns its

level to the next two locations, a transfer assigns its level to

its effective addresses), etc.). A subroutine call propagates

its level to all of its poosible exits.

With all of the main line code dealt with, we next examine

each subroutine to see if aj_l of its calls heve had their

hardware levels assigned. If so, we assign the minimyrn of the

calling hardware levels as the hardware level of the entry to the

subroutine. Wc then assign hardware levels to the rest of the

code in the subroutine, and then loop back to find other

subroutines ail of whose calls have had their levels assigned.

This procedure should result in every line of executable

code having a hardware level assigned to it. If some code has

remained unassigned, then it is not ever executed. If there has

been an attempt to assign to some code several hardware .eveJs,

there is probably a bug in the control structure.

22

Import No, 31B2 Bolt Beranek and Newman Inc.

Next we assien hardware levels to the data and variables of

the system. First, all of the read-only variables (i.e.,

constants) are located and marked as such. All other va^ablcs

arc assigned the hardware level of the minimum of their

referents. This should assign a hardware level to all variables,

and every used word in the program, both code and data, will now

nave a hardware level assigned to it,
»

Now we assign software levels to the code. Each interrupt

entrance is assigned a software level equal to its hardware

level. Then, for all instructions which are neither at the

returns of subroutines nor instructions which affect the

interrupt system (e.g., LOCK or UNLOCK) we propagate the software

levels as we did the hardware levels. The level of the

instruction following one which affects the interrupt system

should simply reflect whatever was done to the interrupt system,

and then propagation can continue. Subroutines are a little more

complicated.

We initially assign to each subroutine entrance a level of

zero and propagate that assignment through the subroutine to

determine a tentative exiting software level for each exit from

the subroutine. Then, as we encounter a subroutine call

instruction (either in the main code or in. another subroutine) we

Report No. 3182 Bolt Beranek and Newman Inc.

compare the software level of the call and the tentative software

level of the subroutine entrance. If the calling level is

lower-numbered than the subroutine level, each place that ^he

subroutine could exit to is assigned the software level of the

associated exit. If the calling level is higher-numbered than

the subroutine level, the subroutine entrance is reassigned with

the level of the call and the new level is propagated through the

subroutine (which may entail chrr^es in other subroutines). If

the software level of anj£ exit from the subroutine is changed,

then every call to that subroutine thus far processed must have

the affected exit reassigned and this new level must bo

propagated to the succeeding instructions. Since such a ehanre

can only Ineree-e an instruction's software level number (and

there are only a finite number of levels), this procedure will

eventually terminate. When it does terminate, each subroutine

will have been assigned the maximum of the software levels of all

of its calls, and the effects of such an assignment will have

been propagated back through the calling sequences.

At this point, all executable code should have both hardware

and software levels assigned to it. If, at any point, the system

has attempted to assign two different software levels to a word

(except as a result of reassigning a subroutine), it assigns the

maximum. If, at any point, it has attempted to assign a software

level larger than the hardware Jevel, then there is a bug.

2U

Report No» 3102 Bolt Beranck and Newman Inc.

Now we are ready to verify that all of the data references

are bug-free. First, many types of data references are

"interrupt-proof"; e.g., an isolated LOAD or STORE reference.

f,Daneerous,, references to variables must be checked, however.

F^^ each such reference, the scope of the reference must be

identified. Within each such scope, determine the largest

software level occurrinf! anywhere within it (not forcetting to

trace through any subroutines called). Then verify that the

hardware level assigned to it is equal to the derived

refcrence-software-level, Any violation is an error: if the

hardware ievel is less than the software level, then the

reference is not sufficiently locked to insure a DUg-iVfc6

reference; if the hardware level is greater than the software

level, tnen the reference is excessively locked and perhaps

system performance caA be improved by increasing the software

level of the reference.

This procedure should verify that there are no interrupt

bugs in the control or data structures of a program. The

ambiguities (e.g., in determining "dangerous" versus "safe"

refprences) can usually be eliminated by the cooperation of the

programmer; for example, the programmer could just use the

op-code SSTORE (which would assemble in the same way as a STORE)

to indicate a "safe" store, or he could use a different mnemonic

25

Heport No, 3182
Bolt Beranek and Newman I nc

i
for potentially ^kinninr instrunt irmo -h^-v- x^.^i, instructions which are known, in the

context, never or always to skip.

'.^ Summ.' any

Our approach has been threefold: 1) we have analyzed

exactly what properties and constructs within a systen could give

rise to multiproEramming conflicts; 2) we have written macros

for our assembler which note the various protection structures

and lop any deviations (i.e., protections whore none are needed,

and portions which reauxro additional protection); ana 3) we

" - ' a .rf-nn^.,r. fr.pT! which a more complete and more

automatic system could be built.

Finally, we have extended the theoretical basis of our

system so that other types of rauitiproeramminß structures, e.g.,

multiprocessing and polling systems, can be handled. We have

designed the basis of an automatic programming systen which would

allow the writing of multiprogramming conflict-free programs with

minima] unnecessary overhead. The rules, although difficult to

inenrpcrate into an assembly lanpuape, could easily be included

in an appropriate higher level language.

Conference
We described this work at ^o IPTP/Tf i "-„,.■

J. » ^ i ,' i v - ^ n o r K A n g

0n S0ftware r°r Minicomputers at Lake Balaton, Hungary; and a

Report No, 3182 Jolt Deranek and Newman Inc.

written description of the work is to appear in a book published

by North-Holland,

27

JJNCIJ\SS1! vu

DOCUMENT CONTROL DATA R&D
V^tf is i f.l'.«.jfil

Bolt Bcronck and Ncwiimn Inc
50 Moulton Street
Cambridge, MA 02138

Unclassified
Ph. auoijf;

QUARTERLY TOCItNICAL REPORT NO, 3 INTERFACE MESSAGE PROCESSORS

* JH^rmMi-vrMOTri (Typv I,! frpcjfi nnrf,mcfuatvr dale;

1 JulTy_l975 to 30 September 1975
•> Au t MORiSt f^ ffsf i iftsi n.-mt

3olt Beranek and Newtiian Inc,

e HfePO« t rj A f t

October 1975

F08606^75-C-0032
fc. PBOJEC T NO

?a. TOTAL NO o f f A G F 5

fi. ORIGiN A T ftH'E hvPOHl Nii-MfjilSiSi

Report No, 3182

üh OtHE« Mt PORT HOOU ^nv oJhr f /wimbe'5 that msi- hf assifin-rtf
this TEpiiftj

Distribution unlimited

e ARPA ro^puter network is a packet-switching storc-and-forward communications
system designed for use by computers and computer terminals. This Quarterly
Technical Report briefly describes various aspects of network operation and
maintenance (installatiofl of IMPS, security activities. Network Control Center
program modifications, network hardware maintenance, and developments related
to the Terminal IMP, 316 IMP, Pluribus IMP, and Satellite_IMP) and presents in
detail a systematic method for detecting and preventing ^interrupt^ or "multi-
programmingMÄbugs,

\

DD FORM 1473 CPACI I)

uiui ->
UNCLASSIFIED
S* < unty Clijf ^i(i(.sfi.in

UNCLASSmiiU
St« ufits (■,l«,t,ijfif«ti<>n

K t T W O H O g

Computers and Communication

Store and Forward Communication

ARPA Computer Network

Packets

Packet-switching

Interface Message Processor

IMP

Terminal IMP

TIP

Pluribus

Satellite IMP

Access Control

Accounting

Private Line Interface

PL1

Broadcast Communications

A e k now1ed gmc n t

Retransmission

NCC

Multiprogramming

Interrupts

Program Verification

DD ,fr:..1473 (RAf k)
UNCLAHSII-I1T)

S(*i Ml i\y (t sssfji .Hi«

